< List of probability distributions

## What is the Beta Geometric Distribution?

The beta geometric distribution (also called the Type I Geometric) is a type of geometric distribution, where the probability of success parameter, p, has a Beta distribution with shape parameters alpha(α) and beta(β); both shape parameters are positive (α > 0 and β > 0). It is a type of compound distribution.

The distribution often models the number of failures that will happen in a binomial process before the first observed success. The probability of success is the mean of the distribution, given by the formula α / (α + β). This particular usage is often called the shifted beta binomial.

One particular use often cited is with fecundity in the population, i.e. the number of failures before a successful pregnancy. In fact, the model was originally developed by Porter and Park (1964, as cited in American Statistical Association., 1988) to model this exact scenario: waiting time to conception. It is also used in various other population studies and in process control.

## Geometric vs. Beta Geometric Distribution

The main difference between the geometric and the Beta Geometric is that* p* remains constant with the geometric and changes with the beta geometric.

## References

American Statistical Association (1988). Proceedings of the Social Statistics Section.

King, M. (2017). Statistics: A Practical Approach for Process Control Engineers. John Wiley and Sons.

NIST. BGEPDF. Retrieved November 12, 2019 from: https://www.itl.nist.gov/div898/software/dataplot/refman2/auxillar/bgepdf.htm

R Documentation. Betageom. Retrieved November 12, 2019 from: https://www.rdocumentation.org/packages/VGAM/versions/1.1-1/topics/Betageom